CONSTRUCTION & REAL ESTATE
levi-stute-PuuP2OEYqWk-unsplash-2
Discover how crafting a robust AI data strategy identifies high-value opportunities. Learn how Ryan Companies used AI to enhance efficiency and innovation.
Read the Case Study ⇢ 

 

    LEGAL SERVICES
    levi-stute-PuuP2OEYqWk-unsplash-2
    Discover how a global law firm uses intelligent automation to enhance client services. Learn how AI improves efficiency, document processing, and client satisfaction.
    Read the Case Study ⇢ 

     

      HEALTHCARE
      levi-stute-PuuP2OEYqWk-unsplash-2
      A startup in digital health trained a risk model to open up a robust, precise, and scalable processing pipeline so providers could move faster, and patients could move with confidence after spinal surgery. 
      Read the Case Study ⇢ 

       

        ⇲ Dive Into
        LEGAL SERVICES
        carli-jeen-15YDf39RIVc-unsplash-1
        Learn how Synaptiq helped a law firm cut down on administrative hours during a document migration project.
        Read the Case Study ⇢ 

         

          GOVERNMENT/LEGAL SERVICES
          joel-durkee-1Hx3VqgApkI-unsplash
          Learn how Synaptiq helped a government law firm build an AI product to streamline client experiences.
          Read the Case Study ⇢ 

           

            strvnge-films-P_SSMIgqjY0-unsplash-2-1-1

            Mushrooms, Goats, and Machine Learning: What do they all have in common? You may never know unless you get started exploring the fundamentals of Machine Learning with Dr. Tim Oates, Synaptiq's Chief Data Scientist. You can read and visualize his new book in Python, tinker with inputs, and practice machine learning techniques for free. 

            Start Chapter 1 Now ⇢ 

             

              How Should My Company Prioritize AIQ™ Capabilities?

               

                 

                 

                 

                Start With Your AIQ Score

                  6 min read

                  AIQ: What We Mean & What You Stand to Gain

                  Featured Image
                  Synaptiq has spent the last decade studying the role of data and artificial intelligence (AI) in organizations. We’ve consulted with our clients, conferred with our partners, collaborated with our competitors, and conducted independent, deep-dive research projects to understand how and why organizations leverage these technologies.

                   

                  There is a lot of hype surrounding data and AI.

                  The New York Times: “There are seemingly endless ways in which artificial intelligence is beginning to touch our lives, from discovering new materials to new drugs [...] to picking the fruit we eat”

                  Forbes: “AI and machine learning are at the top of many lists of the most important skills in today's job market. Jobs requesting AI or machine-learning skills are expected to increase by 71% in the next five years.”

                  Gartner: [AI] is evolving rapidly through new techniques, dedicated infrastructures, and hardware.

                  However, the reality is more complicated.

                  The New York Times: “Artificial intelligence technology is promising, but it’s not a magic potion.”

                  Forbes: “AI implementation is not instantaneous. It takes preparation to ensure that the solutions you've chosen for your business are the right ones and that they will be capable of benefiting your business.”

                  Gartner: “The reality is that most organizations struggle to scale the AI pilots into enterprise-wide production, which limits the ability to realize AI’s potential business value.”

                   

                  Why Do We Care?

                  In 2019, Boston Consulting Group surveyed 2,500 executives about artificial intelligence. The results were damning. Although 90 percent of respondents agreed that AI represented “a business opportunity for their company,” 70 percent reported little to no gains from AI so far. Additionally, although 90 percent of respondents’ companies had invested in AI, more than 60 percent had failed to realize any gains from AI in the past three years.

                  One might ask: “Has AI return on investment (ROI) improved in 2022?” Unfortunately, no. 

                  We have seen a growing awareness of AI and its applications. McKinsey & Company reported a six percent increase in AI adoption across industries in its latest Global Survey. However, McKinsey & Co. also noted significant contrasts between its “high-performer” respondents—“those who said that at least 20 percent of their organizations’ earnings before interest and taxes was attributable to their use of AI”—and others.

                  “High-performers” enjoyed significantly higher ROI than their counterparts. The source of their success? Engagement in certain data and AI “best practices”.

                  These findings echo an enduring pattern. More organizations are growing aware of and, subsequently, adopting AI. But few manage a significant ROI. And interestingly, these “high performers” consistently attribute their success to a shortlist of best practices.

                  Time and time again, we’ve come to the same conclusion: 

                  Maturity in eleven key capabilities helps organizations meet their data and AI objectives.

                   

                  data organization ethics infographic [Recovered]-02-1

                   

                   

                  We call the cumulation of these capabilities AIQ™. Similar to IQ, which represents a reasoning ability according to performance on problem-solving tests, AIQ™ measures an organization’s ability to leverage data and AI according to our in-house assessment.

                  What are the 11 Capabilities?

                  Synaptiq’s AIQ™ assessment tests eleven capabilities, each of which represents a broad category of specific data and AI “best practices.” We chose a broad, overarching focus for this initial assessment because no two organizations are the same, so, no two are suited to the same best practices, even if they are striving for maturity in the same capabilities.

                  Consider “data governance” for example. This AIQ™ capability pertains to the framework by which an organization governs the use of its data assets. An organization with “good” data governance will have formal roles, policies, and metrics to set standards for the efficient, effective use of its data assets and measure progress toward these standards.

                  Although all organizations should incorporate these data governance practices in some form, no two organizations should incorporate them in the same form. For example, a law firm will have different business objectives and desired outcomes than, say, a hospital. Therefore, these two organizations will need to employ very different practices—practices specifically tailored to their unique needs—in order to achieve data governance maturity.

                  Consider the following capabilities, with your organization in mind. Although these broad capabilities should help any organization meet its data and AI objectives, your organization should approach them through the practices suited to you. Ultimately, the best practice is always that which best suits your needs.

                  Why Should You Care?

                  We developed AIQ™ based on years of successful strategy work for our clients and partners. It’s a comprehensive methodology for leveraging data and AI: technologies that often go un- or under-utilized. Simply put, AIQ™ solves two common  point points:

                  1. Organizations miss opportunities by failing to invest in data and AI.

                  2. Organizations fumble opportunities by poorly investing in data and AI.

                  AIQ™ ensures that an organization achieves maturity in the eleven capabilities—the foundation for data and AI-driven initiatives—before they invest in these technologies.

                  Synaptiq’s AIQ™ assessment can give your organization a measure of its overall maturity. However, for those hungry for more, we also work directly with organizations to determine the practices that will best serve their growth toward individual capabilities.

                   

                  humankind of ai

                   

                  Photo by Synaptiq


                   

                  About Synaptiq

                  Synaptiq is an AI and data science consultancy based in Portland, Oregon. We collaborate with our clients to develop human-centered products and solutions. We uphold a strong commitment to ethics and innovation. 

                  Contact us if you have a problem to solve, a process to refine, or a question to ask.

                  You can learn more about our story through our past projects, blog, or podcast

                  Additional Reading:

                  How to Know When You Need an AI Expert vs DIY

                  Knowledge is power. Knowledge is important in AI because it takes knowledge to effectively deploy AI solutions, with...

                  Your Three-Point Checklist for Choosing an AI Partner

                  Choosing an AI partner is a high-stakes decision. In 2025, AI will be the single-largest technology spending budget...

                  We Helped a Startup Fight Wildfires with AI & Atmospheric Balloons

                  Climate Change Fuels Record Wildfires

                  The 2021 wildfire season scorched 3.6 million acres in the United States. [1]...