CONSTRUCTION & REAL ESTATE
levi-stute-PuuP2OEYqWk-unsplash-2
Discover how crafting a robust AI data strategy identifies high-value opportunities. Learn how Ryan Companies used AI to enhance efficiency and innovation.
Read the Case Study ⇢ 

 

    LEGAL SERVICES
    levi-stute-PuuP2OEYqWk-unsplash-2
    Discover how a global law firm uses intelligent automation to enhance client services. Learn how AI improves efficiency, document processing, and client satisfaction.
    Read the Case Study ⇢ 

     

      HEALTHCARE
      levi-stute-PuuP2OEYqWk-unsplash-2
      A startup in digital health trained a risk model to open up a robust, precise, and scalable processing pipeline so providers could move faster, and patients could move with confidence after spinal surgery. 
      Read the Case Study ⇢ 

       

        ⇲ Dive Into
        LEGAL SERVICES
        carli-jeen-15YDf39RIVc-unsplash-1
        Learn how Synaptiq helped a law firm cut down on administrative hours during a document migration project.
        Read the Case Study ⇢ 

         

          GOVERNMENT/LEGAL SERVICES
          joel-durkee-1Hx3VqgApkI-unsplash
          Learn how Synaptiq helped a government law firm build an AI product to streamline client experiences.
          Read the Case Study ⇢ 

           

            strvnge-films-P_SSMIgqjY0-unsplash-2-1-1

            Mushrooms, Goats, and Machine Learning: What do they all have in common? You may never know unless you get started exploring the fundamentals of Machine Learning with Dr. Tim Oates, Synaptiq's Chief Data Scientist. You can read and visualize his new book in Python, tinker with inputs, and practice machine learning techniques for free. 

            Start Chapter 1 Now ⇢ 

             

              How Should My Company Prioritize AIQ™ Capabilities?

               

                 

                 

                 

                Start With Your AIQ Score

                  3 min read

                  AI & ML: What's the Difference?

                  Featured Image

                  Artificial intelligence (AI) and machine learning (ML) aren't synonymous. It’s a common mistake to use these terms interchangeably, but ML is a subset of AI, not a different word for the same idea. Learning the difference between ML and other types of AI is a step toward tech-literacy worth taking — especially if you’re a business leader, working professional, or student — because you almost certainly encounter them every day. 

                  Artificial Intelligence vs. Machine Learning

                  Artificial intelligence is a sub-discipline of computer science concerned with developing artificial systems capable of performing tasks that typically require human intelligence. We categorize AI into different subsets based on functionality. One of those subsets is machine learning, which involves teaching artificial systems to learn from data and improve their performance over time.  ML-enabled systems can analyze vast amounts of data incredibly quickly and accurately. ML applications are everywhere; in fact, you probably used one to find this blog. Google, Twitter, and LinkedIn leverage ML algorithms to order search results and deliver recommendations.

                  Four Types of Machine Learning

                  You should familiarize yourself with these four common types of machine learning:

                  1. Supervised machine learning requires labeled data, or data that has been classified by a human “supervisor.” It teaches a system to predict outputs from inputs. Your iPhone uses an application of supervised learning, image classification, to recognize when you take a “selfie” and organize your photos accordingly.

                  2. Unsupervised machine learning uses unlabeled data. It’s particularly useful for identifying patterns in large and complex datasets, which are difficult to label. Amazon uses an application of unsupervised learning called “clustering” to group customers by shared characteristics into market segments. [1]

                  3. Semi-supervised learning uses some labeled data alongside lots of unlabeled data. It can improve the accuracy of supervised learning models when labeled data is scarce and unlabeled data is abundant.

                  4. Reinforcement learning trains a system on simulated experiences and feedback. Its objective is to teach a system to make decisions that achieve the best outcome in a dynamic situation. Reinforcement learning enables robots to discover the optimal behaviors for navigating new environments and completing unstructured tasks.

                  Photo by Shaun Meintjes on Unsplash


                   

                  About Synaptiq

                  Synaptiq is an AI and data science consultancy based in Portland, Oregon. We collaborate with our clients to develop human-centered products and solutions. We uphold a strong commitment to ethics and innovation. 

                  Contact us if you have a problem to solve, a process to refine, or a question to ask.

                  You can learn more about our story through our past projects, blog, or podcast

                  Additional Reading:

                  How to Know When You Need an AI Expert vs DIY

                  Knowledge is power. Knowledge is important in AI because it takes knowledge to effectively deploy AI solutions, with...

                  Your Three-Point Checklist for Choosing an AI Partner

                  Choosing an AI partner is a high-stakes decision. In 2025, AI will be the single-largest technology spending budget...

                  We Helped a Startup Fight Wildfires with AI & Atmospheric Balloons

                  Climate Change Fuels Record Wildfires

                  The 2021 wildfire season scorched 3.6 million acres in the United States. [1]...