Artificial intelligence (AI) and machine learning (ML) aren't synonymous. It’s a common mistake to use these terms interchangeably, but ML is a subset of AI, not a different word for the same idea. Learning the difference between ML and other types of AI is a step toward tech-literacy worth taking — especially if you’re a business leader, working professional, or student — because you almost certainly encounter them every day.
Artificial intelligence is a sub-discipline of computer science concerned with developing artificial systems capable of performing tasks that typically require human intelligence. We categorize AI into different subsets based on functionality. One of those subsets is machine learning, which involves teaching artificial systems to learn from data and improve their performance over time. ML-enabled systems can analyze vast amounts of data incredibly quickly and accurately. ML applications are everywhere; in fact, you probably used one to find this blog. Google, Twitter, and LinkedIn leverage ML algorithms to order search results and deliver recommendations.
You should familiarize yourself with these four common types of machine learning:
Photo by Shaun Meintjes on Unsplash
Synaptiq is an AI and data science consultancy based in Portland, Oregon. We collaborate with our clients to develop human-centered products and solutions. We uphold a strong commitment to ethics and innovation.
Contact us if you have a problem to solve, a process to refine, or a question to ask.
You can learn more about our story through our past projects, blog, or podcast.